Extensions 1→N→G→Q→1 with N=C3 and Q=C32xDic3

Direct product G=NxQ with N=C3 and Q=C32xDic3
dρLabelID
Dic3xC33108Dic3xC3^3324,155

Semidirect products G=N:Q with N=C3 and Q=C32xDic3
extensionφ:Q→Aut NdρLabelID
C3:(C32xDic3) = C32xC3:Dic3φ: C32xDic3/C32xC6C2 ⊆ Aut C336C3:(C3^2xDic3)324,156

Non-split extensions G=N.Q with N=C3 and Q=C32xDic3
extensionφ:Q→Aut NdρLabelID
C3.1(C32xDic3) = C32xDic9φ: C32xDic3/C32xC6C2 ⊆ Aut C3108C3.1(C3^2xDic3)324,90
C3.2(C32xDic3) = C3xC32:C12φ: C32xDic3/C32xC6C2 ⊆ Aut C3366C3.2(C3^2xDic3)324,92
C3.3(C32xDic3) = C3xC9:C12φ: C32xDic3/C32xC6C2 ⊆ Aut C3366C3.3(C3^2xDic3)324,94
C3.4(C32xDic3) = Dic3xC3xC9central extension (φ=1)108C3.4(C3^2xDic3)324,91
C3.5(C32xDic3) = Dic3xHe3central stem extension (φ=1)366C3.5(C3^2xDic3)324,93
C3.6(C32xDic3) = Dic3x3- 1+2central stem extension (φ=1)366C3.6(C3^2xDic3)324,95

׿
x
:
Z
F
o
wr
Q
<